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Both enantiomers of kainic acid have been synthesized from enantioenriched planar chiral cyclic amide
2a. The C3 and C4 stereocenters in the pyrrolidine ring were constructed by transannular Cope rearrange-
ment of 2a, and the carboxyl group at the C2 position was introduced through lithiation followed by a
carboxylation in the presence of an external chiral ligand.

� 2008 Elsevier Ltd. All rights reserved.
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(–)-Kainic acid [(–)-1] is a marine natural product that has been
first isolated from the Japanese marine alga Digenea simplex.1 (–)-1
is capable of neurotransmitting activity and therefore has been
widely used as a tool in neuropharmacology, especially in the
study of epilepsy, Alzheimer’s disease, and Huntington’s chorea.2,3
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Scheme 1. Planar chirality of amide 2.
The biological activity of (–)-1 stems from its ability to act as a con-
formationally restricted analog of L-glutamate, and is linked to the
highly functionalized trisubstituted pyrrolidine ring with three
contiguous stereocenters. These molecular properties of (–)-1 have
attracted considerable attention from organic chemists.4

Recently, we have reported a novel chiral amide 2, which has
only a planar chirality (Scheme 1).5 The key features of this class
of heterocycles are (i) their planar chirality is remarkably stable
at ambient temperature, and both enantiomers can be easily ob-
tained via resolution of the racemic one, (ii) the planar chirality
can be transferred to the central chirality via both inter- and intra-
molecular transformations without the loss of stereopurity.5,6 This
means that enantioenriched 2 can serve as a synthetic precursor
for a variety of nitrogen-containing chiral compounds with central
chirality. We believed that further exploration of this kind of pla-
ll rights reserved.

: +81 92 583 7810.
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nar chiral heterocycles chemistry will allow a conceptually novel
approach to the synthesis of (–)-1.

Here, we report the successful asymmetric total synthesis of
both enantiomers of 1 using the optically active amide 2a
(R1 = H, R2 = Me) as a chiral building block. Scheme 2 depicts the
retrosynthetic strategy. We planned to introduce a carboxyl group
in the C2 position through lithiation followed by carboxylation,
and to introduce the carboxyl group on C3-side chain through hyd-
roboration/oxidation of the olefin followed by further oxidation.
For the stereoselective construction of (3S,4S)-C, we planned to
perform a transannular Cope rearrangement of (S)-2a.

The requisite amide 2a was prepared from the easily available
seven-membered lactam 3 by a previously developed method.5b

The enantiomers were then separated by a semipreparative HPLC
with chiral stationary column (see Scheme 3).7 When maintained
at �30 �C in its crystalline form, the enantiopurity of (S)-2a thus
obtained remains unchanged for at least a year.8
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Scheme 4. Synthesis of (–)-1. Reagents and conditions: (a) cat. PdCl2(PhCN)2,
CH2Cl2, rt, 87%; (b) (Sia)2BH, THF, 0 �C?rt, then H2O2, NaOH, MeOH, rt, 82%; (c)
TBSCl, imidazole, CH2Cl2, 0 �C, 99%; (d) Li naphthalenide, THF, �78 �C; (e) Boc2O,
Et3N, CH2Cl2, 0 �C, 88% for two steps; (f) s-BuLi, 11, Et2O, �78 �C then ClCOOMe,
�78 �C, 84% (9b:10b = 58:42); (g) Jones reagent, acetone, 0 �C ? rt; (h) TMSCHN2,
benzene-MeOH, rt, 81% for two steps; (i) aq KOH, THF, rt then TFA, CH2Cl2, 57% for
two steps.
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Scheme 2. Retrosynthetic analysis of (–)-1.
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The Cope rearrangement of (S)-2a (>98% ee) performed in the
presence of a Pd(II) catalyst provided (3S,4S)-4 („C) as the sole
product in 87% yield (>98% dr, >98% ee) (see Scheme 4).9,10 The ob-
served stereoselectivity shows that the reaction most probably
proceeds via the TS-1-like transition state.11 The planar chirality
of 2a was transferred to central chiralities without the loss of
stereopurity. Selective hydroboration of the monosubstituted
alkene in 4 using disiamylborane,12,13 followed by protection of
the hydroxyl group with TBS, provided 6.

In order to avoid an undesired ortho-lithiation of the Ts group in
the following lithiation/carboxylation step, the Ts group of 6 was
changed to a Boc group using a standard procedure.14 Lithiation/
carboxylation of 8 was performed in order to introduce a carboxyl
group at the C2 position. To gain a basic insight into the regioselec-
tivity and stereoselectivity of this lithiation, we initially examined
the reaction of easily available rac-815 with s-BuLi in the presence
of TMEDA, followed by carboxylation using CO2 gas. However, the
desired (2S*,3S*,4S*)-9a was obtained only in 36% yield, along with
its epimer (2R*,3S*,4S*)-9a (5%) and regioisomer 10a (38%, dr = 68:
32).16 In order to improve the selectivities, we performed a similar
reaction of (3S,4S)-8 in the presence of an external chiral ligand
(ECL).17 For the construction of the 2S-configuration, we selected
O’Brien’s chiral amine 11, which is known as a pro-(R)-proton-
selective ECL in the lithiation of N-Boc-pyrrolidine.18,19 The lithia-
tion of (3S, 4S)-8 (>98% ee) using s-BuLi/11 followed by a reaction
with methylchloroformate,20 provided the desired C3-carboxyla-
tion product 9b in excellent stereoselectivity (49%, >98% dr), along
with 10b (35%); and recovered 8 (12%). 9b and 10b were easily
separated by standard silicagel chromatography. The treatment
of 9b with Jones reagent provided 12 via a sequential deprotection
of TBS group and oxidation of the resulting primary alcohol on the
C3 side chain. For ease of purification, we converted 12 to its
methyl ester 13 by a reaction with TMSCHN2.21 Finally, alkaline
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Scheme 3. Synthesis of enantio-enriched 2a.
hydrolysis of the ester moieties followed by removal of the Boc
group with TFA yielded (–)-1, whose spectroscopic data were in
excellent agreement with those of a natural sample.

Except for the C2-carboxylation step, we synthesized the unnat-
ural enantiomer of 1 from (R)-2a in a similar manner (Scheme 5).

The Cope rearrangement of (R)-2a provided (3R,4R)-4 (>98% dr,
>98% ee), which was converted to (3R,4R)-8 by the above-men-
tioned steps. For the synthesis of (+)-1, it is required to have a
2R-selective carboxylation at the C2 position. We accomplish this
by using (–)-sparteine (14), a pro-(S)-proton-selective ECL.17,22

The lithiation of (3R,4R)-8 with s-BuLi/(–)-14 followed by carboxyl-
ation gave the desired (2R,3R,4R)-9b [36%, 66% (br s m)] along with
its regioisomer 10b [9%, 16% (br s m), >95% dr], and recovered 8
(45%). The observed regioselectivity shows that sparteine is a more
efficient coordinating agent for the C2-selective lithiation than
amine 11. In analogy to the synthesis of (–)-1 from (2S,3S,4S)-9b,
(2R,3R,4R)-9b was then converted to the desired (+)-1.

In summary, an asymmetric total synthesis of both enantiomers
of kainic acid has been accomplished. The main feature of the syn-
thesis is the stereoselective construction of C3 and C4 central chi-
ralities by conversion of the planar chirality of the enantioenriched
cyclic amide. Research on further synthetic applications of the pla-
nar chiral heterocycles is in progress.
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